Introduction to NumPy and Pandas

Introduction

This notebook and accompanying webinar was developed and released by the enDAQ team. This is the second “chapter” of our series on Python for Mechanical Engineers:

  1. Get Started with Python

  2. Introduction to Numpy & Pandas

  3. Introduction to Plotly

  4. Introduction of the enDAQ Library

To sign up for future webinars and watch previous ones, visit our webinars page.

Recap of Python Introduction

  1. Python is popular for good reason

  2. There are many ways to interact with Python

    • Here we are in Google Colab based on Jupyter Notebooks

  3. There are many open source libraries to use

    • Today we are covering two of the most popular:

      • Numpy

      • Pandas

    • And teasing a bit of:

      • Plotly

      • enDAQ

8914683e586b4761bc5393b5ba0eae2f

SO MANY Other Resources

Python is incredibly popular and so there are a lot of resources you can tap into online. You can either:

  • Just start coding and google specific questions when you get stuck (my preference for learning)

  • Follow a few online tutorials (like this first)

  • Do both!

Here are a few resources:

fd4bc34e0ff0418cba54e8f62f5b778c

01cd8c39a15943e6a314ac0f55d7e754

7b70fbfacbe34265a54ecc0c9b55968e

NumPy

NumPy provides an in depth overview of what exactly NumPy is. Quoting them: >At the core of the NumPy package, is the ndarray object. This encapsulates n-dimensional arrays of homogeneous data types, with many operations being performed in compiled code for performance.

Let’s get started by importing it, typically shortened to np because of how frequently it’s called. This will come standard in most Python distributions such as Anaconda. If you need to install it simply:

!pip install numpy
[ ]:
import numpy as np

Creating Arrays

Manually or from Lists

Manually create a list and demonstrate that operations on that list are difficult.

[ ]:
lst = [0, 1, 2, 3]
lst * 2
[0, 1, 2, 3, 0, 1, 2, 3]

That isn’t what we expected! For lists, we need to loop through all elements to apply a function to them which can be incredibly time consuming.

[ ]:
[i * 2 for i in lst]
[0, 2, 4, 6]

Now lets make a numpy array and once in an array, let’s show how intuitive operations are now that they are performed element by element.

[ ]:
array = np.array(lst)
print(array)
print(array * 2)
print(array + 2)
[0 1 2 3]
[0 2 4 6]
[2 3 4 5]

Let’s create a 2D matrix of 32 bit floats.

[ ]:
np.array([[1, 0, 0],
          [0, 1, 0],
          [0, 0, 1]], dtype=np.float32)
array([[1., 0., 0.],
       [0., 1., 0.],
       [0., 0., 1.]], dtype=float32)

Using Functions

We’ll go through a few here, but for more in depth examples and options see NumPy’s Array Creation Routines. These first few examples are for very basic arrays/matrices.

[ ]:
np.zeros(5)
array([0., 0., 0., 0., 0.])
[ ]:
np.zeros([2, 3])
array([[0., 0., 0.],
       [0., 0., 0.]])
[ ]:
np.eye(3)
array([[1., 0., 0.],
       [0., 1., 0.],
       [0., 0., 1.]])

Now let’s start making sequences.

[ ]:
np.arange(10)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
[ ]:
np.arange(0,  #start
          10) #stop (not included in array)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
[ ]:
np.arange(0,  #start
          10, #stop (not included in array)
          2)  #step size
array([0, 2, 4, 6, 8])
[ ]:
np.linspace(0,  #start
            10, #stop (default to be included, can pass in endpoint=False)
            6)  #number of data points evenly spaced
array([ 0.,  2.,  4.,  6.,  8., 10.])
[ ]:
np.logspace(0, #output starts being raised to this value
            3, #ending raised value
            4) #number of data points
array([   1.,   10.,  100., 1000.])

Logspace is the equivalent of rasing a base by a linspaced array.

[ ]:
10 ** np.linspace(0,3,4)
array([   1.,   10.,  100., 1000.])
[ ]:
np.logspace(0, 4, 5, base=2)
array([ 1.,  2.,  4.,  8., 16.])

If you don’t want to have to do the mental math to know what exponent to raise the values to, you can use geomspace but this only helps for base of 10.

[ ]:
np.geomspace(1, 1000, 4)
array([   1.,   10.,  100., 1000.])

Random numbers!

[ ]:
np.random.rand(5)
array([0.05057259, 0.19699801, 0.46727495, 0.67357217, 0.60387782])
[ ]:
np.random.rand(2, 3)
array([[0.76299702, 0.06301467, 0.92031266],
       [0.42219446, 0.73721929, 0.39450975]])

Indexing

Let’s first create a simple array.

[ ]:
array = np.arange(1, 11, 1)
array
array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10])

Now index the first item.

[ ]:
array[0]
1

Index the last item.

[ ]:
array[-1]
10

Grab every 2nd item.

[ ]:
array[::2]
array([1, 3, 5, 7, 9])

Grab every second item starting at index of 1 (the second value)

[ ]:
array[1::2]
array([ 2,  4,  6,  8, 10])

Start from the second item, going to the 7th but skipping every other. (Our first time using the full array[start (inclusive): stop (exclusive): step] array ‘slicing’ notation)

[ ]:
array[1:6:2]
array([2, 4, 6])

Reverse the order.

[ ]:
array[::-1]
array([10,  9,  8,  7,  6,  5,  4,  3,  2,  1])

Boolean operations to index the array.

[ ]:
array[array < 5]
array([1, 2, 3, 4])
[ ]:
array[array * 2 < 5]
array([1, 2])

Integer list can also index arrays.

[ ]:
array[[1,3,5]]
array([2, 4, 6])

Now let’s create a slightly more complicated, 2 dimensional array.

[ ]:
array_2d = np.arange(10).reshape((2, 5))
array_2d
array([[0, 1, 2, 3, 4],
       [5, 6, 7, 8, 9]])

Indexing the second dimension.

[ ]:
array_2d[:, 1]
array([1, 6])

Any combination of these indexing methods works as well.

[ ]:
array_2d[[True, False], 1::2]
array([[1, 3]])
[ ]:
array_2d[1, [0,1,4]]
array([5, 6, 9])

Operations

[ ]:
array
array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10])
[ ]:
array + 100
array([101, 102, 103, 104, 105, 106, 107, 108, 109, 110])
[ ]:
array * 2
array([ 2,  4,  6,  8, 10, 12, 14, 16, 18, 20])

To raise all the elements in an array to an exponent we have to use the notation ** not ^.

[ ]:
array ** 2
array([  1,   4,   9,  16,  25,  36,  49,  64,  81, 100])

Use that shape to create a new array matching it to do operations with.

[ ]:
array2 = np.arange(array.shape[0]) * 5
array2
array([ 0,  5, 10, 15, 20, 25, 30, 35, 40, 45])
[ ]:
array2 + array
array([ 1,  7, 13, 19, 25, 31, 37, 43, 49, 55])

Stats of an Array

[ ]:
print(array)
print(array_2d)
[ 1  2  3  4  5  6  7  8  9 10]
[[0 1 2 3 4]
 [5 6 7 8 9]]
[ ]:
print(array.shape)
print(array_2d.shape)
(10,)
(2, 5)
[ ]:
print(len(array))
print(len(array_2d))
10
2
[ ]:
print(array.max())
print(array_2d.max())
10
9
[ ]:
print(array.min())
print(array_2d.min())
1
0
[ ]:
array.std()
2.8722813232690143
[ ]:
array.cumsum()
array([ 1,  3,  6, 10, 15, 21, 28, 36, 45, 55])
[ ]:
array.cumprod()
array([      1,       2,       6,      24,     120,     720,    5040,
         40320,  362880, 3628800])

Constants

[ ]:
np.pi
3.141592653589793
[ ]:
np.e
2.718281828459045
[ ]:
np.inf
inf

Functions

[ ]:
np.sin(np.pi / 2)
1.0
[ ]:
np.cos(np.pi)
-1.0
[ ]:
np.log(np.e)
1.0
[ ]:
np.log10(100)
2.0
[ ]:
np.log2(64)
6.0

To demonstrate rounding, let’s first make a new array with decimals.

[ ]:
array = np.arange(4) / 3
print(array)
np.around(array, 2)
[0.         0.33333333 0.66666667 1.        ]
array([0.  , 0.33, 0.67, 1.  ])

Looping vs Vectorization

As mentioned in the beginning, NumPy uses machine code with their ndarray objects which is what leads to the performance improvements. Let’s demonstrate this by constructing a simple sine wave.

[ ]:
fs = 500 #sampling rate in Hz
d_t = 1 / fs #time steps in seconds
n_step = 1000 #number of steps (there will be n_step+1 data points)

amp = 1 #amplitude of sine wave
f = 2 #frequency of sine wave

time = np.linspace(0,             #start time
                   n_step * d_t,    #end time
                   num=n_step + 1)  #number of data points, one more than the steps to include an endpoint
time.shape
(1001,)

First we make a function to loop through each element and calculate the amplitude.

[ ]:
def sine_wave_with_loop(time, amp, f, phase=0):
  length = time.shape[0]
  wave = np.zeros(length)

  for i in range(length-1):
    wave[i] = np.sin(2 * np.pi * f * time[i] + phase * np.pi / 180)*amp
  return wave

Now let’s time how quickly that executes for our time array of 1,001 data points.

[ ]:
%timeit sine_wave_with_loop(time, amp, f)
The slowest run took 7.52 times longer than the fastest. This could mean that an intermediate result is being cached.
100 loops, best of 5: 2.55 ms per loop

Now let’s do the same using NumPy’s sine function and vectorization.

[ ]:
def sine_wave_with_numpy(time, amp, f, phase=0):
  """Takes in a time array and sine wave parameters, returns an array of the sine wave amplitude."""
  return np.sin(2 * np.pi * f * time + phase * np.pi / 180) * amp

Notice my docstrings!

[ ]:
help(sine_wave_with_numpy)
Help on function sine_wave_with_numpy in module __main__:

sine_wave_with_numpy(time, amp, f, phase=0)
    Takes in a time array and sine wave parameters, returns an array of the sine wave amplitude.

[ ]:
%timeit sine_wave_with_numpy(time, amp, f)
The slowest run took 4.34 times longer than the fastest. This could mean that an intermediate result is being cached.
10000 loops, best of 5: 27.9 µs per loop

Using vectorization is about 100x faster! And this increases the longer the loops are.

Why Vectorization Works So Much Faster

The above example highlights that NumPy is much faster, but why? Because it is using compiled machine code under the hood for it’s operations.

Python has the Numba package which can be used to do this compilation which we will do to highlight just why NumPy is faster (and recommended!).

[ ]:
from numba import njit

numba_sine_wave_with_loop = njit(sine_wave_with_loop)
numba_sine_wave_with_numpy = njit(sine_wave_with_numpy)
[ ]:
%timeit numba_sine_wave_with_loop(time, amp, f)
%timeit numba_sine_wave_with_numpy(time, amp, f)
The slowest run took 14426.53 times longer than the fastest. This could mean that an intermediate result is being cached.
1 loop, best of 5: 22.8 µs per loop
The slowest run took 11783.25 times longer than the fastest. This could mean that an intermediate result is being cached.
1 loop, best of 5: 22.1 µs per loop

Let’s combine this into a DataFrame we’ll discuss next in more detail, but here’s a preview.

[ ]:
import pandas as pd

time_data = pd.DataFrame({'Time (us)':[2.77*100, 27.5, 23.1, 22.6],
                          'Method':['Loop','NumPy','Loop','NumPy'],
                          'Numba?':['w/o','w/o','w','w']}
)
time_data
Time (us) Method Numba?
0 277.0 Loop w/o
1 27.5 NumPy w/o
2 23.1 Loop w
3 22.6 NumPy w

Now let’s plot it and preview Plotly!

[ ]:
!pip install --upgrade -q plotly
import plotly.express as px
import plotly.io as pio; pio.renderers.default = "iframe"

fig = px.bar(time_data,
             x="Method",
             y="Time (us)",
             color="Numba?",
             title="Compute Time of a Sine Wave for 1000 Elements",
             barmode='group')
fig.show()
     |████████████████████████████████| 23.9 MB 1.5 MB/s

LoopNumPy050100150200250
Numba?w/owCompute Time of a Sine Wave for 1000 ElementsMethodTime (us)

Pandas

Pandas is built on top of NumPy meaning that the data is stored still as NumPy ndarray objects under the hood. But it exposes a much more intuitive labeling/indexing architecture and allows you to link arrays of different types (strings, floats, integers etc.) to one another.

To quote Jake VanderPlas: >At the very basic level, Pandas objects can be thought of as enhanced versions of NumPy structured arrays in which the rows and columns are identified with labels rather than simple integer indices.

To start, import pandas as pd, again this will come standard in virtually all Python distributions such as Anaconda. But to install is simply:

!pip install pandas
[ ]:
import pandas as pd

There are three types of Pandas objects, we’ll only focus on the first two:

  1. Series – 1D labeled homogeneous array, size-immutable

  2. Data Frames – 2D labeled, size-mutable tabular structure with heterogenic columns

  3. Panel – 3D labeled size mutable array.

Creating a Series

First let’s create a few numpy arrays.

[ ]:
amplitude = sine_wave_with_numpy(time, amp, f, 180)
print(time)
print(amplitude)
[0.    0.002 0.004 ... 1.996 1.998 2.   ]
[ 1.22464680e-16 -2.51300954e-02 -5.02443182e-02 ...  5.02443182e-02
  2.51300954e-02  1.10218212e-15]

Now let’s see what a series looks like made from one of the arrays.

[ ]:
pd.Series(amplitude)
0       1.224647e-16
1      -2.513010e-02
2      -5.024432e-02
3      -7.532681e-02
4      -1.003617e-01
            ...
996     1.003617e-01
997     7.532681e-02
998     5.024432e-02
999     2.513010e-02
1000    1.102182e-15
Length: 1001, dtype: float64

This type of series has some value, but you really start to see it when you add in an index.

[ ]:
series = pd.Series(data=amplitude,
                   index=time,
                   name='Amplitude')
series
0.000    1.224647e-16
0.002   -2.513010e-02
0.004   -5.024432e-02
0.006   -7.532681e-02
0.008   -1.003617e-01
             ...
1.992    1.003617e-01
1.994    7.532681e-02
1.996    5.024432e-02
1.998    2.513010e-02
2.000    1.102182e-15
Name: Amplitude, Length: 1001, dtype: float64

Here’s where Pandas shines - indexing is much more intuitive (and inclusive) to specify based on labels, not those confusing integer locations. We’ll come back to this when we have the dataframe next too.

[ ]:
series[0: 0.01]
0.000    1.224647e-16
0.002   -2.513010e-02
0.004   -5.024432e-02
0.006   -7.532681e-02
0.008   -1.003617e-01
0.010   -1.253332e-01
Name: Amplitude, dtype: float64

Being able to plot quickly is also a plus!

[ ]:
series.plot()
<matplotlib.axes._subplots.AxesSubplot at 0x7f51188d8310>
../_images/webinars_Webinar_Introduction_NumPy_and_Pandas_119_1.png

Remember we never left the NumPy array, it is still here and can be accessed with the following.

[ ]:
series.values
array([ 1.22464680e-16, -2.51300954e-02, -5.02443182e-02, ...,
        5.02443182e-02,  2.51300954e-02,  1.10218212e-15])
[ ]:
series.to_numpy()
array([ 1.22464680e-16, -2.51300954e-02, -5.02443182e-02, ...,
        5.02443182e-02,  2.51300954e-02,  1.10218212e-15])

Creating a DataFrame

A DataFrame is basically a sequence of aligned series objects, and by aligned I mean they share a common index or label. This let’s us mix and match types easily among other benefits.

First we’ll start creating dataframes using what is called a “dictionary” with keys and values.

[ ]:
df = pd.DataFrame({"Phase 0": sine_wave_with_numpy(time, amp, f, 00),
                   "Phase 90": sine_wave_with_numpy(time, amp, f, 90),
                   "Phase 180": sine_wave_with_numpy(time, amp, f, 180),
                   "Phase 270": sine_wave_with_numpy(time, amp, f, 270)},
                  index=time)
df
Phase 0 Phase 90 Phase 180 Phase 270
0.000 0.000000e+00 1.000000 1.224647e-16 -1.000000
0.002 2.513010e-02 0.999684 -2.513010e-02 -0.999684
0.004 5.024432e-02 0.998737 -5.024432e-02 -0.998737
0.006 7.532681e-02 0.997159 -7.532681e-02 -0.997159
0.008 1.003617e-01 0.994951 -1.003617e-01 -0.994951
... ... ... ... ...
1.992 -1.003617e-01 0.994951 1.003617e-01 -0.994951
1.994 -7.532681e-02 0.997159 7.532681e-02 -0.997159
1.996 -5.024432e-02 0.998737 5.024432e-02 -0.998737
1.998 -2.513010e-02 0.999684 2.513010e-02 -0.999684
2.000 -9.797174e-16 1.000000 1.102182e-15 -1.000000

1001 rows × 4 columns

Plotting (Preview)

Dataframes also wrap around Matplotlib to allow for plotting directly from the dataframe object itself. This can also be done from the Pandas Series object too like we showed earlier.

[ ]:
df.plot()
<matplotlib.axes._subplots.AxesSubplot at 0x7f51187bd810>
../_images/webinars_Webinar_Introduction_NumPy_and_Pandas_126_1.png
[ ]:
df['Max'] = df.max(axis=1)
df['Min'] = df.min(axis=1)
df
Phase 0 Phase 90 Phase 180 Phase 270 Max Min
0.000 0.000000e+00 1.000000 1.224647e-16 -1.000000 1.000000 -1.000000
0.002 2.513010e-02 0.999684 -2.513010e-02 -0.999684 0.999684 -0.999684
0.004 5.024432e-02 0.998737 -5.024432e-02 -0.998737 0.998737 -0.998737
0.006 7.532681e-02 0.997159 -7.532681e-02 -0.997159 0.997159 -0.997159
0.008 1.003617e-01 0.994951 -1.003617e-01 -0.994951 0.994951 -0.994951
... ... ... ... ... ... ...
1.992 -1.003617e-01 0.994951 1.003617e-01 -0.994951 0.994951 -0.994951
1.994 -7.532681e-02 0.997159 7.532681e-02 -0.997159 0.997159 -0.997159
1.996 -5.024432e-02 0.998737 5.024432e-02 -0.998737 0.998737 -0.998737
1.998 -2.513010e-02 0.999684 2.513010e-02 -0.999684 0.999684 -0.999684
2.000 -9.797174e-16 1.000000 1.102182e-15 -1.000000 1.000000 -1.000000

1001 rows × 6 columns

This will be the topic of the next webinar, plotting with Plotly!

Note that I need to install an upgraded version of Plotly in Colab because the default Plotly Express version doesn’t work in Colab (but their more advanced graph objects does).

[ ]:
!pip install --upgrade -q plotly
import plotly.express as px
[ ]:
px.line(df).show()
00.511.52−1−0.500.51
variablePhase 0Phase 90Phase 180Phase 270MaxMinindexvalue

Load from CSV

This dataset was discussed in a blog on vibration metrics and used bearing data as an example.

Note you don’t have to use a CSV. They have a lot of other file formats natively supported (see full list):

  • hdf

  • feather

  • pickle

But I know everyone likes CSVs!

[ ]:
df = pd.read_csv('https://info.endaq.com/hubfs/Plots/bearing_data.csv', index_col=0)
df
Fault_021 Fault_014 Fault_007 Normal
Time
0.000000 -0.105351 -0.074395 0.053116 0.046104
0.000083 0.132888 0.056365 0.116628 -0.037134
0.000167 -0.056535 0.201257 0.083654 -0.089496
0.000250 -0.193178 -0.024528 -0.026477 -0.084906
0.000333 0.064879 -0.072284 0.045319 -0.038594
... ... ... ... ...
9.999667 0.095754 0.145055 -0.098923 0.064254
9.999750 -0.123083 0.092263 -0.067573 0.070721
9.999833 -0.036508 -0.168120 0.005685 0.103265
9.999917 0.097006 -0.035898 0.093400 0.124335
10.000000 -0.008762 0.165846 0.130923 0.114947

120000 rows × 4 columns

Save CSV

Like reading data, there are a host of native formats we can save data from a dataframe. See documentation.

[ ]:
df.to_csv('bearing-data.csv')

Simple Analysis

[ ]:
df.describe()
Fault_021 Fault_014 Fault_007 Normal
count 120000.000000 120000.000000 120000.000000 120000.000000
mean 0.012251 0.002729 0.002953 0.010755
std 0.198383 0.157761 0.121272 0.065060
min -1.037862 -1.338628 -0.650390 -0.269114
25% -0.107020 -0.096649 -0.072284 -0.032544
50% 0.011682 0.001299 0.004548 0.013351
75% 0.132054 0.100872 0.080081 0.056535
max 0.917908 1.124376 0.594025 0.251382
[ ]:
df.std()
Fault_021    0.198383
Fault_014    0.157761
Fault_007    0.121272
Normal       0.065060
dtype: float64
[ ]:
df.max()
Fault_021    0.917908
Fault_014    1.124376
Fault_007    0.594025
Normal       0.251382
dtype: float64

Note that these built in Pandas functions are using NumPy to process and are the equivalent of doing the following.

[ ]:
np.max(df)
Fault_021    0.917908
Fault_014    1.124376
Fault_007    0.594025
Normal       0.251382
dtype: float64
[ ]:
df.quantile(0.25)
Fault_021   -0.107020
Fault_014   -0.096649
Fault_007   -0.072284
Normal      -0.032544
Name: 0.25, dtype: float64
[ ]:
df['abs(max)'] = df.abs().max(axis=1)
df
Fault_021 Fault_014 Fault_007 Normal abs(max)
Time
0.000000 -0.105351 -0.074395 0.053116 0.046104 0.105351
0.000083 0.132888 0.056365 0.116628 -0.037134 0.132888
0.000167 -0.056535 0.201257 0.083654 -0.089496 0.201257
0.000250 -0.193178 -0.024528 -0.026477 -0.084906 0.193178
0.000333 0.064879 -0.072284 0.045319 -0.038594 0.072284
... ... ... ... ... ...
9.999667 0.095754 0.145055 -0.098923 0.064254 0.145055
9.999750 -0.123083 0.092263 -0.067573 0.070721 0.123083
9.999833 -0.036508 -0.168120 0.005685 0.103265 0.168120
9.999917 0.097006 -0.035898 0.093400 0.124335 0.124335
10.000000 -0.008762 0.165846 0.130923 0.114947 0.165846

120000 rows × 5 columns

Indexing

Here is where indexing in Python gets a whole lot more intuitive! A dataframe with an index let’s use index values (time in this case) to slice the dataframe, not rely on the nth element in the arrays.

[ ]:
df[0: 0.05]
Fault_021 Fault_014 Fault_007 Normal abs(max)
Time
0.000000 -0.105351 -0.074395 0.053116 0.046104 0.105351
0.000083 0.132888 0.056365 0.116628 -0.037134 0.132888
0.000167 -0.056535 0.201257 0.083654 -0.089496 0.201257
0.000250 -0.193178 -0.024528 -0.026477 -0.084906 0.193178
0.000333 0.064879 -0.072284 0.045319 -0.038594 0.072284
... ... ... ... ... ...
0.049584 0.131010 0.129136 -0.014619 0.021487 0.131010
0.049667 0.437675 -0.221399 -0.025340 0.021070 0.437675
0.049750 0.095754 -0.120689 0.033137 0.035256 0.120689
0.049834 -0.137269 0.275977 0.023716 0.044226 0.275977
0.049917 0.150203 0.019167 -0.044670 0.005424 0.150203

600 rows × 5 columns

We can also use the same convention as before by adding in a step definition, in this case we’ll grab every 100th point.

[ ]:
df[0: 0.05: 100]
Fault_021 Fault_014 Fault_007 Normal abs(max)
Time
0.000000 -0.105351 -0.074395 0.053116 0.046104 0.105351
0.008333 -0.481067 -0.137745 -0.010558 -0.012934 0.481067
0.016667 -0.265985 -0.073746 -0.140669 0.027329 0.265985
0.025000 -0.192343 0.203856 -0.168120 -0.029832 0.203856
0.033334 0.018984 0.154476 -0.072933 0.076353 0.154476
0.041667 -0.289975 -0.227409 0.088202 0.016898 0.289975

There are ways to use the integer based indexing if you so desire.

[ ]:
df.iloc[0:10]
Fault_021 Fault_014 Fault_007 Normal abs(max)
Time
0.000000 -0.105351 -0.074395 0.053116 0.046104 0.105351
0.000083 0.132888 0.056365 0.116628 -0.037134 0.132888
0.000167 -0.056535 0.201257 0.083654 -0.089496 0.201257
0.000250 -0.193178 -0.024528 -0.026477 -0.084906 0.193178
0.000333 0.064879 -0.072284 0.045319 -0.038594 0.072284
0.000417 0.214874 0.034761 0.060751 0.025451 0.214874
0.000500 -0.076353 0.094212 -0.174130 0.040680 0.174130
0.000583 -0.065922 -0.070010 -0.229521 0.042558 0.229521
0.000667 0.206529 -0.079431 0.045482 0.038177 0.206529
0.000750 0.021487 0.092426 0.027452 0.044018 0.092426

Rolling

I love the rolling method which allows for easy rolling window calculations, something you’ll do frequently with time series data.

[ ]:
n = int(df.shape[0] / 100)
df.rolling(n).max()
Fault_021 Fault_014 Fault_007 Normal abs(max)
Time
0.000000 NaN NaN NaN NaN NaN
0.000083 NaN NaN NaN NaN NaN
0.000167 NaN NaN NaN NaN NaN
0.000250 NaN NaN NaN NaN NaN
0.000333 NaN NaN NaN NaN NaN
... ... ... ... ... ...
9.999667 0.748721 0.768318 0.408362 0.18525 0.933137
9.999750 0.748721 0.768318 0.408362 0.18525 0.933137
9.999833 0.748721 0.768318 0.408362 0.18525 0.933137
9.999917 0.748721 0.768318 0.408362 0.18525 0.933137
10.000000 0.748721 0.768318 0.408362 0.18525 0.933137

120000 rows × 5 columns

[ ]:
df.rolling(n).max()[::n]
Fault_021 Fault_014 Fault_007 Normal abs(max)
Time
0.000000 NaN NaN NaN NaN NaN
0.100001 0.726190 0.710166 0.443448 0.184416 0.813809
0.200002 0.696150 0.641131 0.411773 0.204443 0.740376
0.300003 0.491289 0.846612 0.492178 0.172525 0.846612
0.400003 0.578699 0.608482 0.524828 0.204860 0.608482
... ... ... ... ... ...
9.500079 0.731823 0.500950 0.474798 0.206112 0.760820
9.600080 0.697818 0.713253 0.470412 0.190466 0.713253
9.700081 0.677791 0.547244 0.415996 0.229060 0.677791
9.800082 0.625220 0.569498 0.391469 0.176489 0.653801
9.900083 0.749555 0.949271 0.332342 0.176489 0.949271

100 rows × 5 columns

[ ]:
px.line(df.rolling(n).max()[::n]).show()
01234567890.20.40.60.811.21.4
variableFault_021Fault_014Fault_007Normalabs(max)Timevalue

Datetime Data (Yay Finance!)

Let’s use Yahoo Finance and stock data as a relatable example of data with datetimes.

[ ]:
!pip install -q yfinance
import yfinance as yf
     |████████████████████████████████| 6.3 MB 56.8 MB/s
  Building wheel for yfinance (setup.py) ... done
[ ]:
df =  yf.download(["SPY", "AAPL", "MSFT", "AMZN", "GOOGL"],
                  start='2019-01-01',
                  end='2021-09-24')
df
[*********************100%***********************]  5 of 5 completed
Adj Close Close High Low Open Volume
AAPL AMZN GOOGL MSFT SPY AAPL AMZN GOOGL MSFT SPY AAPL AMZN GOOGL MSFT SPY AAPL AMZN GOOGL MSFT SPY AAPL AMZN GOOGL MSFT SPY AAPL AMZN GOOGL MSFT SPY
Date
2019-01-02 38.382229 1539.130005 1054.680054 97.961319 238.694550 39.480000 1539.130005 1054.680054 101.120003 250.179993 39.712502 1553.359985 1060.790039 101.750000 251.210007 38.557499 1460.930054 1025.280029 98.940002 245.949997 38.722500 1465.199951 1027.199951 99.550003 245.979996 148158800 7983100 1593400 35329300 126925200
2019-01-03 34.559078 1500.280029 1025.469971 94.357529 232.998627 35.547501 1500.280029 1025.469971 97.400002 244.210007 36.430000 1538.000000 1066.260010 100.190002 248.570007 35.500000 1497.109985 1022.369995 97.199997 243.669998 35.994999 1520.010010 1050.670044 100.099998 248.229996 365248800 6975600 2098000 42579100 144140700
2019-01-04 36.034370 1575.390015 1078.069946 98.746010 240.803070 37.064999 1575.390015 1078.069946 101.930000 252.389999 37.137501 1594.000000 1080.000000 102.510002 253.110001 35.950001 1518.310059 1036.859985 98.930000 247.169998 36.132500 1530.000000 1042.560059 99.720001 247.589996 234428400 9182600 2301100 44060600 142628800
2019-01-07 35.954170 1629.510010 1075.920044 98.871956 242.701706 36.982498 1629.510010 1075.920044 102.059998 254.380005 37.207500 1634.560059 1082.699951 103.269997 255.949997 36.474998 1589.189941 1062.640015 100.980003 251.690002 37.174999 1602.310059 1080.969971 101.639999 252.690002 219111200 7993200 2372300 35656100 103139100
2019-01-08 36.639565 1656.579956 1085.369995 99.588829 244.981995 37.687500 1656.579956 1085.369995 102.800003 256.769989 37.955002 1676.609985 1093.349976 103.970001 257.309998 37.130001 1616.609985 1068.349976 101.709999 254.000000 37.389999 1664.689941 1086.000000 103.040001 256.820007 164101200 8881400 1770700 31514400 102512600
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
2021-09-17 146.059998 3462.520020 2816.000000 299.869995 441.399994 146.059998 3462.520020 2816.000000 299.869995 441.399994 148.820007 3497.409912 2869.000000 304.500000 445.369995 145.759995 3452.129883 2809.399902 299.529999 441.019989 148.820007 3488.409912 2860.610107 304.170013 444.920013 129728700 4614100 2666800 41309300 118220200
2021-09-20 142.940002 3355.729980 2774.389893 294.299988 434.040009 142.940002 3355.729980 2774.389893 294.299988 434.040009 144.839996 3419.000000 2780.000000 298.720001 436.559998 141.270004 3305.010010 2726.439941 289.519989 428.859985 143.800003 3396.000000 2763.229980 296.329987 434.880005 123478900 4669100 2325900 38278700 166445500
2021-09-21 143.429993 3343.629883 2780.659912 294.799988 433.630005 143.429993 3343.629883 2780.659912 294.799988 433.630005 144.600006 3379.699951 2800.229980 297.540009 437.910004 142.779999 3332.389893 2765.560059 294.070007 433.070007 143.929993 3375.000000 2794.989990 295.690002 436.529999 75834000 2780900 1266600 22364100 92526100
2021-09-22 145.850006 3380.050049 2805.669922 298.579987 437.859985 145.850006 3380.050049 2805.669922 298.579987 437.859985 146.429993 3389.000000 2817.739990 300.220001 440.029999 143.699997 3341.050049 2771.030029 294.510010 433.750000 144.449997 3351.000000 2786.080078 296.730011 436.049988 76404300 2411400 1252800 26626300 102350100
2021-09-23 146.830002 3416.000000 2824.320068 299.559998 443.179993 146.830002 3416.000000 2824.320068 299.559998 443.179993 147.080002 3428.959961 2833.929932 300.899994 444.890015 145.639999 3380.050049 2808.030029 297.529999 439.600006 146.649994 3380.050049 2819.750000 298.850006 439.850006 64838200 2379400 1047600 18604600 76396000

688 rows × 30 columns

Let’s compare not the price, but the relative performance.

[ ]:
df = df['Adj Close']
df = df / df.iloc[0]
df
AAPL AMZN GOOGL MSFT SPY
Date
2019-01-02 1.000000 1.000000 1.000000 1.000000 1.000000
2019-01-03 0.900393 0.974758 0.972304 0.963212 0.976137
2019-01-04 0.938830 1.023559 1.022177 1.008010 1.008834
2019-01-07 0.936740 1.058721 1.020139 1.009296 1.016788
2019-01-08 0.954597 1.076309 1.029099 1.016614 1.026341
... ... ... ... ... ...
2021-09-17 3.805407 2.249661 2.670004 3.061106 1.849225
2021-09-20 3.724119 2.180277 2.630551 3.004247 1.818391
2021-09-21 3.736885 2.172416 2.636496 3.009351 1.816673
2021-09-22 3.799936 2.196078 2.660210 3.047938 1.834395
2021-09-23 3.825468 2.219436 2.677893 3.057942 1.856682

688 rows × 5 columns

[ ]:
px.line(df).show()
Jul 2019Jan 2020Jul 2020Jan 2021Jul 202111.522.533.54
variableAAPLAMZNGOOGLMSFTSPYDatevalue

The rolling function will play very nicely with datetime data as shown here when I get the moving average over a 40 day period. And this can handle unevenly sampled date easily.

[ ]:
px.line(df.rolling('40d').mean()).show()
Jul 2019Jan 2020Jul 2020Jan 2021Jul 202111.522.533.54
variableAAPLAMZNGOOGLMSFTSPYDatevalue

Indexing with datetime data though will require a slightly extra step, but then it is easy.

[ ]:
from datetime import date
start = date(2021, 4, 1)
end = date(2021, 4, 30)
[ ]:
df[start:end]
AAPL AMZN GOOGL MSFT SPY
Date
2021-04-01 3.194388 2.053758 2.019361 2.463520 1.667522
2021-04-05 3.269703 2.096464 2.103918 2.531830 1.691456
2021-04-06 3.277754 2.094573 2.094721 2.519530 1.690457
2021-04-07 3.321644 2.130678 2.122947 2.540267 1.692414
2021-04-08 3.385532 2.143614 2.133756 2.574320 1.700447
2021-04-09 3.454094 2.190978 2.152947 2.600749 1.712810
2021-04-12 3.408386 2.195649 2.128247 2.601359 1.713434
2021-04-13 3.491232 2.209040 2.137549 2.627585 1.718512
2021-04-14 3.428903 2.165509 2.125678 2.598106 1.712644
2021-04-15 3.493050 2.195455 2.166771 2.637852 1.731041
2021-04-16 3.484220 2.208676 2.164400 2.650457 1.736827
2021-04-19 3.501880 2.190855 2.171047 2.630127 1.728294
2021-04-20 3.456951 2.166607 2.160854 2.625247 1.715640
2021-04-21 3.467079 2.184364 2.160229 2.648830 1.731874
2021-04-22 3.426566 2.149942 2.135738 2.614167 1.716057
2021-04-23 3.488376 2.170629 2.180690 2.654624 1.734663
2021-04-26 3.498764 2.214888 2.190171 2.658690 1.738284
2021-04-27 3.490193 2.220365 2.172204 2.662960 1.737910
2021-04-28 3.469157 2.247049 2.236735 2.587636 1.737410
2021-04-29 3.466560 2.255372 2.268707 2.566798 1.748482
2021-04-30 3.414100 2.252844 2.231482 2.563443 1.736994
[ ]:
pd.date_range(start='1/1/2019', end='08/31/2021', freq='M')
DatetimeIndex(['2019-01-31', '2019-02-28', '2019-03-31', '2019-04-30',
               '2019-05-31', '2019-06-30', '2019-07-31', '2019-08-31',
               '2019-09-30', '2019-10-31', '2019-11-30', '2019-12-31',
               '2020-01-31', '2020-02-29', '2020-03-31', '2020-04-30',
               '2020-05-31', '2020-06-30', '2020-07-31', '2020-08-31',
               '2020-09-30', '2020-10-31', '2020-11-30', '2020-12-31',
               '2021-01-31', '2021-02-28', '2021-03-31', '2021-04-30',
               '2021-05-31', '2021-06-30', '2021-07-31', '2021-08-31'],
              dtype='datetime64[ns]', freq='M')
[ ]:
df.resample(rule='Q').max()
AAPL AMZN GOOGL MSFT SPY
Date
2019-03-31 1.240671 1.182005 1.172043 1.193962 1.143113
2019-06-30 1.346619 1.275045 1.228998 1.373424 1.187797
2019-09-30 1.435250 1.313073 1.181344 1.410902 1.218385
2019-12-31 1.887424 1.214842 1.291833 1.595237 1.315273
2020-03-31 2.108057 1.410030 1.445813 1.893692 1.377995
2020-06-30 2.367841 1.796086 1.388762 2.053599 1.324073
2020-09-30 3.473547 2.294446 1.628352 2.343208 1.471860
2020-12-31 3.544629 2.237387 1.730354 2.281494 1.551179
2021-03-31 3.712409 2.196046 2.008780 2.484634 1.649707
2021-06-30 3.562980 2.277546 2.323662 2.765187 1.787611
2021-09-30 4.082358 2.424363 2.753736 3.115720 1.892556

Sorting & Filtering on Tabular Data

To highlight filtering in DataFrames, we’ll use a dataset with a bunch of different columns/series of different types. This data was pulled directly from the enDAQ cloud API off some example recording files.

[ ]:
df = pd.read_csv('https://info.endaq.com/hubfs/data/endaq-cloud-table.csv')
df
Unnamed: 0 tags id serial_number_id file_name file_size recording_length recording_ts created_ts modified_ts device gpsLocationFull velocityRMSFull gpsSpeedFull pressureMeanFull samplePeakStartTime displacementRMSFull psuedoVelocityPeakFull accelerationPeakFull psdResultantOctave samplePeakWindow temperatureMeanFull accelerometerSampleRateFull psdPeakOctaves microphonoeRMSFull gyroscopeRMSFull pvssResultantOctave accelerationRMSFull psdResultant1Hz
0 0 ['Vibration Severity: High', 'Shock Severity: ... 6cd65b8f-1187-3bf9-a431-35304a7f84b7 9695 train-passing-1632515146.ide 10492602 73.612335 1588184436 1632515146 1632515146 NaN nan,nan 6.969 NaN 104.620 1941.125 0.061 419.944 7.513 [0. 0. 0.001 0.024 0.032 0.008 0.008 0.0... [1.241 1.682 1.944 ... 1.852 1.372 1.473] 23.432 19999.0 [0. 0. 0.001 0.131 0.229 0.045 0.05 0.0... NaN 0.625 [ 10.333 25.952 30.28 52.579 172.174 275.8... 0.372 [0. 0. 0. ... 0. 0. 0.]
1 1 ['Vibration Severity: Low', 'Acceleration Seve... 342aacc3-cd91-3124-8cf4-0c7fece6dcab 9316 Seat-Top_09-1632515145.ide 10491986 172.704559 1575800071 1632515146 1632515146 NaN nan,nan 1.535 NaN 98.733 1265.964 0.040 86.595 1.105 [0. 0. 0. 0. 0. 0. 0. 0. ... [0.035 0.024 0.007 ... 0.067 0.031 0.022] 20.133 3996.0 [0. 0. 0.001 0. 0.001 0. 0.001 0.0... NaN 0.945 [53.648 76.9 43.779 44.217 39.351 11.396 9.... 0.082 [ 0. 0. 0. ... nan nan nan]
2 2 ['Shock Severity: Very Low', 'Acceleration Sev... 5c5592b4-2dbc-3124-be8f-c7179eecda49 10118 Bolted-1632515144.ide 6149229 29.396118 1619041447 1632515144 1632515144 NaN nan,nan 14.101 NaN 99.652 17.445 0.154 148.276 15.343 [0.001 0.003 0.004 0.064 0.106 0.102 0.103 0.1... [5.283 5.944 5.19 ... 0.356 1.079 1.099] 23.172 20000.0 [0.001 0.004 0.004 0.128 0.125 0.119 0.14 0.1... 25.507 NaN [ 26.338 27.636 64.097 102.733 107.863 124.6... 2.398 [0. 0.001 0.002 ... 0.002 0.001 0.001]
3 3 ['Shock Severity: Very Low', 'Acceleration Sev... ef832e45-50fa-38b4-8f2c-91769f7cef6e 10309 RMI-2000-1632515143.ide 5909632 60.250855 24 1632515143 1632515143 NaN nan,nan 1.247 NaN 100.467 40.383 0.005 17.287 0.332 [0. 0. 0. 0. 0.001 0.002 0.002 0.0... [0.13 0.118 0.1 ... 0.105 0.1 0.066] 21.806 4012.0 [0. 0. 0. 0. 0.008 0.01 0.019 0.0... 1.754 1.557 [ 0.854 1.159 1.662 1.815 3.022 6.139 10.... 0.079 [ 0. 0. 0. ... nan nan nan]
4 4 ['Shock Severity: Very Low', 'Acceleration Sev... 0396df6a-56b0-3e43-8e46-e1d0d7485ff5 9295 Seat-Base_21-1632515142.ide 5248836 83.092255 1575800210 1632515143 1632515143 NaN nan,nan 7.318 NaN 98.930 1588.299 0.190 251.009 1.085 [0.002 0.007 0.008 0.005 0.002 0.005 0.002 0.0... [0.084 0.137 0.178 ... 0.347 0.324 0.286] 17.820 4046.0 [0.002 0.014 0.016 0.013 0.003 0.031 0.003 0.0... NaN 2.666 [ 74.73 79.453 101.006 151.429 73.92 53.4... 0.130 [0.001 0.002 0.002 ... nan nan nan]
5 5 ['Drive-Test', 'Vibration Severity: Very Low',... 5e293d65-c9e0-3aa1-9098-c9762e8fbc86 11046 Drive-Home_01-1632515142.ide 3632799 61.755371 1616178955 1632515142 1632515142 NaN nan,nan 1.081 NaN 100.284 22.543 0.023 40.197 0.479 [0. 0. 0. 0. 0.001 0. 0. 0. ... [0.001 0.003 0.002 ... 0.011 0.008 0.006] 29.061 4013.0 [0. 0. 0. 0. 0.007 0. 0. 0. ... 16.243 0.363 [ 2.336 7.82 19.078 10.384 16.975 38.326 18.... 0.021 [ 0. 0. 0. ... nan nan nan]
6 6 ['Acceleration Severity: High', 'Shock Severit... cd81c850-9e22-3b20-b570-7411e7a144cc 0 HiTest-Shock-1632515141.ide 2655894 20.331848 1543936974 1632515141 1632515141 NaN nan,nan 167.835 NaN 101.126 327.392 4.055 6058.093 619.178 [0.304 0.486 0.399 0.454 0.347 0.178 0.185 0.1... [ 3.088 3.019 2.893 ... 73.794 40.005 24.303] 9.538 19997.0 [ 0.304 0.537 0.479 0.811 0.624 0.554 0.... NaN NaN [1378.444 2470.941 4368.78 5033.327 5814.49 ... 11.645 [0.157 0.304 0.42 ... 0.001 0.01 0.013]
7 7 ['Vibration Severity: High', 'Acceleration Sev... 0931a23d-3515-3d11-bf97-bb9b2c7863be 11162 Calibration-Shake-1632515140.IDE 2218130 27.882690 1621278970 1632515140 1632515140 NaN nan,nan 46.346 NaN 102.251 8.460 0.617 1142.282 8.783 [2.100e-02 7.400e-02 7.500e-02 4.900e-02 5.500... [7.486 7.496 7.137 ... 7.997 8.294 7.806] 24.545 5000.0 [2.10000e-02 9.00000e-02 8.60000e-02 6.30000e-... NaN 0.166 [ 90.703 198.651 288.078 183.492 126.417 108.4... 2.712 [0.007 0.021 0.055 ... nan nan nan]
8 8 ['Shock Severity: Very Low', 'Acceleration Sev... c1571d10-2329-3aea-aa5d-223733f6336b 10916 FUSE_HSTAB_000005-1632515139.ide 537562 18.491791 1619108004 1632515140 1632515140 NaN nan,nan 1.504 NaN 90.706 12.519 0.036 53.375 0.202 [ 0. 0. 0. 0. 0. 0. 0. nan nan nan nan n... [0.001 0.001 0.001 ... 0.002 0.006 0.006] 18.874 504.0 [0. 0. 0.001 0.001 0. 0. 0. n... NaN 0.749 [ 2.617 6.761 17.326 34.067 28.721 9.469 15.... 0.011 [ 0. 0. 0. ... nan nan nan]
9 0 ['Shock Severity: Medium', 'Acceleration Sever... 8ce137ff-904e-314b-81ff-ff2cea279db2 9874 Coffee_002-1631722736.IDE 60959516 769.299896 952113744 1631722736 1631722736 NaN nan,nan 5.606 NaN 100.339 NaN 0.104 1338.396 2.698 [] [] 24.540 5000.0 [] NaN 0.082 [] 0.059 []
10 1 ['Vibration Severity: High', 'Shock Severity: ... 9d7383fb-40d6-34c1-9d0c-37f11c29bff5 11456 100_Joules_900_lbs-1629315313.ide 1596714 20.200623 1627327315 1629315313 1629315313 NaN nan,nan 53.875 NaN 98.751 5.643 1.053 2961.256 218.634 [0.071 0.201 0.293 0.686 1.565 1.028 0.856 0.9... [0.304 0.274 0.296 ... 1.513 1.313 0.652] 24.180 5000.0 [0.071 0.236 0.311 1.148 2.036 1.791 1.498 2.7... NaN 24.471 [ 194.741 361.14 563.488 855.34 1712.229 ... 2.877 [0.02 0.071 0.138 ... nan nan nan]
11 2 ['Acceleration Severity: High', 'Shock Severit... 5f35ed7f-ff55-36a3-896d-276f06a0e340 11456 50_Joules_900_lbs-1629315312.ide 1597750 20.201752 1627329399 1629315312 1629315312 NaN nan,nan 54.507 NaN 98.745 9.875 1.066 2907.650 231.212 [0.074 0.196 0.327 0.874 1.521 0.917 0.478 0.7... [0.304 0.21 0.098 ... 0.693 1.418 0.932] 24.175 5000.0 [0.074 0.232 0.392 1.258 2.045 2.049 1.143 2.3... NaN 15.575 [ 242.141 388.517 736.981 1070.284 1843.722 ... 2.423 [0.021 0.074 0.137 ... nan nan nan]
12 3 ['Shock Severity: Very Low', 'Vibration Severi... f7240576-47c6-34b8-bdce-3fe11bb5f1c6 11046 Drive-Home_07-1626805222.ide 36225758 634.732056 1616182557 1626805222 1626805222 NaN 42.4679965,-71.12926019999999 6.117 41.425 101.988 NaN 0.135 356.128 23.805 [] [] 28.832 4012.0 [] 16.277 4.185 [] 0.097 []
13 4 ['Big-Mining'] c2c234cc-8055-3fba-ad8b-446c4b6f85dc 5120 Mining-SSX28803_06-1626457584.IDE 402920686 3238.119202 1536953304 1626457585 1626457585 NaN NaN NaN NaN NaN NaN NaN NaN NaN [] [] NaN NaN [] NaN NaN [] NaN []
14 5 ['Shock Severity: Medium', 'Acceleration Sever... 69fd99f8-3d85-38ec-9f5d-67e9d7b7e868 10030 200922_Moto_Max_Run5_Control_Larry-1626297441.ide 4780893 99.325134 1600818455 1626297442 1626297442 NaN nan,nan 55.569 NaN NaN 62.573 1.060 1280.349 29.864 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [ 3.34 13.586 10.13 ... 7.737 8.978 8.672] NaN 4014.0 [[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n [0... NaN NaN [165.983 278.352 717.331 950.513 697.421 358.6... 3.528 [0.006 0.016 0.04 ... nan nan nan]
15 6 ['Ford'] f38361de-30a7-3dda-aec4-e87a67d1ecbb 9695 ford_f150-1626296561.ide 96097059 1207.678344 1584142508 1626296561 1626296561 NaN NaN NaN NaN NaN NaN NaN NaN NaN [] [] NaN NaN [] NaN NaN [] NaN []
16 7 ['Shock Severity: High', 'Vibration Severity: ... 40718e01-f422-3926-a22d-acf6daf1182b 7530 Motorcycle-Car-Crash-1626277852.ide 10489262 151.069336 1562173372 1626277852 1626277852 NaN nan,nan 143.437 NaN 100.363 1137.342 3.988 12831.590 480.737 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [3.371 3.641 3.649 ... 6.168 7.463 7.04 ] 26.989 10001.0 [[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n [0... NaN 19.810 [ 2723.153 5977.212 11406.291 12031.397 7337... 1.732 [2.250e-01 8.390e-01 2.025e+00 ... 1.000e-03 1...
17 8 ['Shock Severity: Very Low', 'Surgical', 'Vibr... ee6dc613-d422-347c-8119-f122a55ac81a 11071 surgical-instrument-1625829182.ide 541994 6.951172 1619110390 1625829183 1625829183 NaN nan,nan 24.418 NaN 99.879 4.020 0.242 387.312 5.739 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0.667 0.549 1.05 ... 1.109 2.86 3.99 ] 21.889 5000.0 [[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n [0... NaN 4.647 [ 88.953 171.73 104.303 71.184 58.883 72.4... 1.568 [0.001 0.001 0.003 ... nan nan nan]
18 9 ['Acceleration Severity: High', 'Shock Severit... f642d81c-7fe7-37fd-ab75-d493fc0556db 9680 LOC__3__DAQ41551_11_01_02-1625170795.IDE 2343292 28.456818 1616645179 1625170795 1625170795 NaN nan,nan 372.049 NaN 105.682 2045.370 9.580 8907.949 622.040 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [ 32.679 24.925 30.95 ... 106.511 27.715 ... 33.452 20010.0 [[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n [0... NaN 286.217 [2333.993 5629.021 6417.48 5802.895 3692.838 ... 94.197 [ 2.09 8.631 18.196 ... 69.565 59.225 60.801]
19 10 ['Vibration Severity: High', 'Shock Severity: ... 0c0e92ae-214a-32bd-a5bb-5e1801da06b2 9680 LOC__4__DAQ41551_15_05-1625170794.IDE 6927958 64.486054 1616646130 1625170794 1625170794 NaN nan,nan 148.591 NaN 105.750 3004.357 2.615 2153.020 585.863 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [14.223 14.903 24.949 ... 11.482 21.319 32.766] 32.202 19992.0 [[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n [0... NaN 277.654 [ 378.188 748.336 1054.232 1115.369 756.905 ... 46.528 [ 0.072 0.302 0.816 ... 52.226 45.804 52.81 ]
20 11 ['Vibration Severity: High', 'Mining-Hammer', ... 99ac47a8-63c2-38a4-8d92-508698eb3752 9680 LOC__6__DAQ41551_25_01-1625170793.IDE 8664238 63.878937 1616648007 1625170793 1625170793 NaN nan,nan 145.223 NaN 102.875 4867.941 3.088 2357.599 564.966 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [ 66.83 54.723 63.536 ... 109.259 85.341 ... 26.031 19992.0 [[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n [0... NaN 245.929 [ 780.577 1168.663 1851.417 1094.945 793.122 ... 54.408 [ 0.162 0.587 1.495 ... 45.639 43.86 40.177]
21 12 ['Mining-Hammer', 'Vibration Severity: High', ... ebf31fb2-9d36-37de-999c-3edb01f17fb2 9680 LOC__2__DAQ38060_06_03_05-1625170793.IDE 1519172 27.057647 1616640862 1625170793 1625170793 NaN nan,nan 323.287 NaN 104.473 1227.975 3.144 5845.241 995.670 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [ 33.294 29.392 19.99 ... 175.123 162.043 ... 25.616 19998.0 [[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n [0... NaN 266.815 [1073.684 940.873 1063.151 957.568 975.826 ... 131.087 [ 0.371 0.409 0.787 ... 27.577 24.778 37.822]
22 13 ['Shock Severity: Very Low', 'Vibration Severi... e39fe506-f39a-3301-866c-9da6a30f9577 9695 Tilt_000000-1625156721.IDE 719403 23.355163 1625156461 1625156722 1625156722 NaN nan,nan 11.042 NaN 99.510 22.966 0.345 330.946 0.378 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0.033 0.029 0.03 ... nan nan nan] 26.410 5000.0 [[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n [0... NaN 11.933 [142.046 273.02 216.774 129.288 54.011 24.0... 0.044 [0.008 0.02 0.03 ... nan nan nan]
[ ]:
df.columns
Index(['Unnamed: 0', 'tags', 'id', 'serial_number_id', 'file_name',
       'file_size', 'recording_length', 'recording_ts', 'created_ts',
       'modified_ts', 'device', 'gpsLocationFull', 'velocityRMSFull',
       'gpsSpeedFull', 'pressureMeanFull', 'samplePeakStartTime',
       'displacementRMSFull', 'psuedoVelocityPeakFull', 'accelerationPeakFull',
       'psdResultantOctave', 'samplePeakWindow', 'temperatureMeanFull',
       'accelerometerSampleRateFull', 'psdPeakOctaves', 'microphonoeRMSFull',
       'gyroscopeRMSFull', 'pvssResultantOctave', 'accelerationRMSFull',
       'psdResultant1Hz'],
      dtype='object')

There’s a lot of data here! So we’ll focus on just a handful of columns and convert the time in seconds to a datetime object.

[ ]:
df = df[['serial_number_id', 'file_name', 'file_size', 'recording_length', 'recording_ts',
         'accelerationPeakFull', 'psuedoVelocityPeakFull', 'accelerationRMSFull',
         'velocityRMSFull', 'displacementRMSFull', 'pressureMeanFull', 'temperatureMeanFull']].copy()

df['recording_ts'] = pd.to_datetime(df['recording_ts'], unit='s')
df = df.sort_values(by=['recording_ts'], ascending=False)
df
serial_number_id file_name file_size recording_length recording_ts accelerationPeakFull psuedoVelocityPeakFull accelerationRMSFull velocityRMSFull displacementRMSFull pressureMeanFull temperatureMeanFull
11 11456 50_Joules_900_lbs-1629315312.ide 1597750 20.201752 2021-07-26 19:56:39 231.212 2907.650 2.423 54.507 1.066 98.745 24.175
10 11456 100_Joules_900_lbs-1629315313.ide 1596714 20.200623 2021-07-26 19:21:55 218.634 2961.256 2.877 53.875 1.053 98.751 24.180
22 9695 Tilt_000000-1625156721.IDE 719403 23.355163 2021-07-01 16:21:01 0.378 330.946 0.044 11.042 0.345 99.510 26.410
7 11162 Calibration-Shake-1632515140.IDE 2218130 27.882690 2021-05-17 19:16:10 8.783 1142.282 2.712 46.346 0.617 102.251 24.545
17 11071 surgical-instrument-1625829182.ide 541994 6.951172 2021-04-22 16:53:10 5.739 387.312 1.568 24.418 0.242 99.879 21.889
8 10916 FUSE_HSTAB_000005-1632515139.ide 537562 18.491791 2021-04-22 16:13:24 0.202 53.375 0.011 1.504 0.036 90.706 18.874
2 10118 Bolted-1632515144.ide 6149229 29.396118 2021-04-21 21:44:07 15.343 148.276 2.398 14.101 0.154 99.652 23.172
20 9680 LOC__6__DAQ41551_25_01-1625170793.IDE 8664238 63.878937 2021-03-25 04:53:27 564.966 2357.599 54.408 145.223 3.088 102.875 26.031
19 9680 LOC__4__DAQ41551_15_05-1625170794.IDE 6927958 64.486054 2021-03-25 04:22:10 585.863 2153.020 46.528 148.591 2.615 105.750 32.202
18 9680 LOC__3__DAQ41551_11_01_02-1625170795.IDE 2343292 28.456818 2021-03-25 04:06:19 622.040 8907.949 94.197 372.049 9.580 105.682 33.452
21 9680 LOC__2__DAQ38060_06_03_05-1625170793.IDE 1519172 27.057647 2021-03-25 02:54:22 995.670 5845.241 131.087 323.287 3.144 104.473 25.616
12 11046 Drive-Home_07-1626805222.ide 36225758 634.732056 2021-03-19 19:35:57 23.805 356.128 0.097 6.117 0.135 101.988 28.832
5 11046 Drive-Home_01-1632515142.ide 3632799 61.755371 2021-03-19 18:35:55 0.479 40.197 0.021 1.081 0.023 100.284 29.061
14 10030 200922_Moto_Max_Run5_Control_Larry-1626297441.ide 4780893 99.325134 2020-09-22 23:47:35 29.864 1280.349 3.528 55.569 1.060 NaN NaN
0 9695 train-passing-1632515146.ide 10492602 73.612335 2020-04-29 18:20:36 7.513 419.944 0.372 6.969 0.061 104.620 23.432
15 9695 ford_f150-1626296561.ide 96097059 1207.678344 2020-03-13 23:35:08 NaN NaN NaN NaN NaN NaN NaN
4 9295 Seat-Base_21-1632515142.ide 5248836 83.092255 2019-12-08 10:16:50 1.085 251.009 0.130 7.318 0.190 98.930 17.820
1 9316 Seat-Top_09-1632515145.ide 10491986 172.704559 2019-12-08 10:14:31 1.105 86.595 0.082 1.535 0.040 98.733 20.133
16 7530 Motorcycle-Car-Crash-1626277852.ide 10489262 151.069336 2019-07-03 17:02:52 480.737 12831.590 1.732 143.437 3.988 100.363 26.989
6 0 HiTest-Shock-1632515141.ide 2655894 20.331848 2018-12-04 15:22:54 619.178 6058.093 11.645 167.835 4.055 101.126 9.538
13 5120 Mining-SSX28803_06-1626457584.IDE 402920686 3238.119202 2018-09-14 19:28:24 NaN NaN NaN NaN NaN NaN NaN
9 9874 Coffee_002-1631722736.IDE 60959516 769.299896 2000-03-03 20:02:24 2.698 1338.396 0.059 5.606 0.104 100.339 24.540
3 10309 RMI-2000-1632515143.ide 5909632 60.250855 1970-01-01 00:00:24 0.332 17.287 0.079 1.247 0.005 100.467 21.806

Filtering is made simple with boolean expressions that can be combined. There is also a method to sort_values by columns/series.

[ ]:
mask = df.recording_ts > pd.to_datetime('2021-01-01')
df[mask].sort_values(by=['serial_number_id'], ascending=False)
serial_number_id file_name file_size recording_length recording_ts accelerationPeakFull psuedoVelocityPeakFull accelerationRMSFull velocityRMSFull displacementRMSFull pressureMeanFull temperatureMeanFull
11 11456 50_Joules_900_lbs-1629315312.ide 1597750 20.201752 2021-07-26 19:56:39 231.212 2907.650 2.423 54.507 1.066 98.745 24.175
10 11456 100_Joules_900_lbs-1629315313.ide 1596714 20.200623 2021-07-26 19:21:55 218.634 2961.256 2.877 53.875 1.053 98.751 24.180
7 11162 Calibration-Shake-1632515140.IDE 2218130 27.882690 2021-05-17 19:16:10 8.783 1142.282 2.712 46.346 0.617 102.251 24.545
17 11071 surgical-instrument-1625829182.ide 541994 6.951172 2021-04-22 16:53:10 5.739 387.312 1.568 24.418 0.242 99.879 21.889
12 11046 Drive-Home_07-1626805222.ide 36225758 634.732056 2021-03-19 19:35:57 23.805 356.128 0.097 6.117 0.135 101.988 28.832
5 11046 Drive-Home_01-1632515142.ide 3632799 61.755371 2021-03-19 18:35:55 0.479 40.197 0.021 1.081 0.023 100.284 29.061
8 10916 FUSE_HSTAB_000005-1632515139.ide 537562 18.491791 2021-04-22 16:13:24 0.202 53.375 0.011 1.504 0.036 90.706 18.874
2 10118 Bolted-1632515144.ide 6149229 29.396118 2021-04-21 21:44:07 15.343 148.276 2.398 14.101 0.154 99.652 23.172
22 9695 Tilt_000000-1625156721.IDE 719403 23.355163 2021-07-01 16:21:01 0.378 330.946 0.044 11.042 0.345 99.510 26.410
20 9680 LOC__6__DAQ41551_25_01-1625170793.IDE 8664238 63.878937 2021-03-25 04:53:27 564.966 2357.599 54.408 145.223 3.088 102.875 26.031
19 9680 LOC__4__DAQ41551_15_05-1625170794.IDE 6927958 64.486054 2021-03-25 04:22:10 585.863 2153.020 46.528 148.591 2.615 105.750 32.202
18 9680 LOC__3__DAQ41551_11_01_02-1625170795.IDE 2343292 28.456818 2021-03-25 04:06:19 622.040 8907.949 94.197 372.049 9.580 105.682 33.452
21 9680 LOC__2__DAQ38060_06_03_05-1625170793.IDE 1519172 27.057647 2021-03-25 02:54:22 995.670 5845.241 131.087 323.287 3.144 104.473 25.616
[ ]:
mask = (df.recording_ts > pd.to_datetime('2021-01-01')) & (df.accelerationPeakFull > 100)
df[mask].sort_values(by=['accelerationPeakFull'], ascending=False)
serial_number_id file_name file_size recording_length recording_ts accelerationPeakFull psuedoVelocityPeakFull accelerationRMSFull velocityRMSFull displacementRMSFull pressureMeanFull temperatureMeanFull
21 9680 LOC__2__DAQ38060_06_03_05-1625170793.IDE 1519172 27.057647 2021-03-25 02:54:22 995.670 5845.241 131.087 323.287 3.144 104.473 25.616
18 9680 LOC__3__DAQ41551_11_01_02-1625170795.IDE 2343292 28.456818 2021-03-25 04:06:19 622.040 8907.949 94.197 372.049 9.580 105.682 33.452
19 9680 LOC__4__DAQ41551_15_05-1625170794.IDE 6927958 64.486054 2021-03-25 04:22:10 585.863 2153.020 46.528 148.591 2.615 105.750 32.202
20 9680 LOC__6__DAQ41551_25_01-1625170793.IDE 8664238 63.878937 2021-03-25 04:53:27 564.966 2357.599 54.408 145.223 3.088 102.875 26.031
11 11456 50_Joules_900_lbs-1629315312.ide 1597750 20.201752 2021-07-26 19:56:39 231.212 2907.650 2.423 54.507 1.066 98.745 24.175
10 11456 100_Joules_900_lbs-1629315313.ide 1596714 20.200623 2021-07-26 19:21:55 218.634 2961.256 2.877 53.875 1.053 98.751 24.180

Another preview to plotly, but visualizing dataframes is made easy, even with mixed types.

[ ]:
px.scatter(df,
           x="recording_ts",
           y="accelerationRMSFull",
           size="recording_length",
           color="serial_number_id",
           hover_name="file_name",
           log_y=True,
           size_max=60).show()
1970198019902000201020200.01250.12512510251002
02k4k6k8k10kserial_number_idrecording_tsaccelerationRMSFull

Plotly automatically made my colors a colorbar because I specified it based on a numeric value. If instead I change the type to string and replot, we’ll see discrete series for each device.

[ ]:
df['device'] = df["serial_number_id"].astype(str)

px.scatter(df,
           x="recording_ts",
           y="accelerationRMSFull",
           size="recording_length",
           color="device",
           hover_name="file_name",
           log_y=True,
           size_max=60).show()

1970198019902000201020200.01250.12512510251002
device114569695111621107110916101189680110461003092959316753005120987410309recording_tsaccelerationRMSFull

Preview of enDAQ Library

Installation

The code is live on GitHub, PyPI, and cleaner documentation is in process that will eventually live on a subdomain of endaq.com.

It can easily be installed with pip.

[ ]:
!pip install -q endaq
  Installing build dependencies ... done
  Getting requirements to build wheel ... done
    Preparing wheel metadata ... done
  Installing build dependencies ... done
  Getting requirements to build wheel ... done
    Preparing wheel metadata ... done
  Installing build dependencies ... done
  Getting requirements to build wheel ... done
    Preparing wheel metadata ... done
  Installing build dependencies ... done
  Getting requirements to build wheel ... done
    Preparing wheel metadata ... done
     |████████████████████████████████| 92 kB 1.1 MB/s
     |████████████████████████████████| 81 kB 11.1 MB/s
  Building wheel for endaq (PEP 517) ... done
  Building wheel for endaq-calc (PEP 517) ... done
  Building wheel for endaq-cloud (PEP 517) ... done
  Building wheel for endaq-ide (PEP 517) ... done

We are using newer versions of some of these libraries so we need to update them then reset the runtime.

[ ]:
! python -m pip install -U -q numpy scipy plotly pandas
exit()
     |████████████████████████████████| 15.7 MB 417 kB/s
     |████████████████████████████████| 28.5 MB 1.3 MB/s
     |████████████████████████████████| 11.3 MB 28.8 MB/s
ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
tensorflow 2.6.0 requires numpy~=1.19.2, but you have numpy 1.21.2 which is incompatible.
google-colab 1.0.0 requires pandas~=1.1.0; python_version >= "3.0", but you have pandas 1.3.3 which is incompatible.
datascience 0.10.6 requires folium==0.2.1, but you have folium 0.8.3 which is incompatible.
albumentations 0.1.12 requires imgaug<0.2.7,>=0.2.5, but you have imgaug 0.2.9 which is incompatible.

[ ]:
import numpy as np
import pandas as pd
import scipy

import plotly.express as px
import plotly.graph_objects as go

import endaq

Access Data from IDE

[ ]:
def get_doc_and_table(file_location, display_table=True, display_recorder_info=True):
  """Given an IDE file location, return the object and table summary"""
  dataset = endaq.ide.get_doc(file_location, quiet=True)
  table = endaq.ide.get_channel_table(dataset)

  if display_recorder_info:
    display(pd.Series(dataset.recorderInfo))
  if display_table:
    display(table)

  return dataset, table.data
[ ]:
[doc,table] = get_doc_and_table('https://info.endaq.com/hubfs/data/Bolted.ide')
CalibrationDate                         1583263964
CalibrationExpiry                       1614799964
CalibrationSerialNumber                       1999
RecorderTypeUID                                  1
RecorderSerial                               10118
HwRev                                            1
FwRev                                            5
FwRevStr                                    2.0.36
ProductName                             W8-E100D40
PartNumber                              W8-E100D40
DateOfManufacture                       1588954110
UniqueChipID                      3782319969872279
McuType                    EFM32GG11B820F2048GL120
RecorderName                    Steve's Microphone
dtype: object
  channel name type units start end duration samples rate
0 8.0 X (100g) Acceleration g 00:00.0381 00:29.0667 00:29.0286 585728 19999.64 Hz
1 8.1 Y (100g) Acceleration g 00:00.0381 00:29.0667 00:29.0286 585728 19999.64 Hz
2 8.2 Z (100g) Acceleration g 00:00.0381 00:29.0667 00:29.0286 585728 19999.64 Hz
3 8.3 Mic Audio A 00:00.0381 00:29.0667 00:29.0286 585728 19999.64 Hz
4 80.0 X (40g) Acceleration g 00:00.0381 00:29.0669 00:29.0287 117760 4020.81 Hz
5 80.1 Y (40g) Acceleration g 00:00.0381 00:29.0669 00:29.0287 117760 4020.81 Hz
6 80.2 Z (40g) Acceleration g 00:00.0381 00:29.0669 00:29.0287 117760 4020.81 Hz
7 36.0 Pressure/Temperature:00 Pressure Pa 00:00.0375 00:29.0771 00:29.0396 31 1.05 Hz
8 36.1 Pressure/Temperature:01 Temperature °C 00:00.0375 00:29.0771 00:29.0396 31 1.05 Hz
9 59.0 Control Pad Pressure Pressure Pa 00:00.0414 00:29.0489 00:29.0075 291 10.01 Hz
10 59.1 Control Pad Temperature Temperature °C 00:00.0414 00:29.0489 00:29.0075 291 10.01 Hz
11 59.2 Relative Humidity Relative Humidity RH 00:00.0414 00:29.0489 00:29.0075 291 10.01 Hz
[ ]:
def get_primary_accel(dataset, table, preferred_ch=None, time_mode='seconds'):
  """Given an IDE object and summary table, return a dataframe of the accelerometer with the most samples unless a channel number is explicitely defined."""
  if preferred_ch:
    df = endaq.ide.to_pandas(doc.channels[preferred_ch],time_mode=time_mode)
  else:
    table = table.sort_values('samples',ascending=False)
    channel = table.loc[table.type=='Acceleration','channel'].iloc[0].parent
    df = endaq.ide.to_pandas(channel,time_mode=time_mode)

  return df.drop(["Mic"], axis=1, errors="ignore")
[ ]:
df = get_primary_accel(doc, table)
df
X (100g) Y (100g) Z (100g)
timestamp
0.381011 -1.268025 -2.824445 -2.262913
0.381061 -1.292439 -1.902800 -4.362554
0.381111 -1.438926 -1.164263 -4.740978
0.381161 -1.274128 -0.914015 -3.483635
0.381211 -0.730907 -1.115435 -1.927214
... ... ... ...
29.667738 -1.036088 -1.817350 -2.207980
29.667788 -1.383993 -1.585412 -2.092012
29.667838 -1.438926 -1.933318 -1.512169
29.667888 -1.219196 -2.738994 -0.682078
29.667938 -0.865187 -3.526360 0.111391

585728 rows × 3 columns

PSD

We created a wrapper to SciPy’s Welch’s method to make the interface rely on dataframes.

[ ]:
df_psd = endaq.calc.psd.welch(df, bin_width=10)

fig = px.line(df_psd)

fig.update_layout(
    title='Power Spectral Density',
    xaxis_title="Frequency (Hz)",
    yaxis_title="Acceleration (g^2/Hz)",
    xaxis_type="log",
    yaxis_type="log",
    legend=dict(
        orientation="h",
        yanchor="top",
        y=-.2,
        xanchor="right",
        x=1
    )
  )

fig.show()
10234567891002345678910002345678910k510n25100n252510μ25100μ250.001250.01
variableX (100g)Y (100g)Z (100g)Power Spectral DensityFrequency (Hz)Acceleration (g^2/Hz)

We also provide a function to convert a linear spaced PSD to an octave spaced one.

[ ]:
df_psd_oct = endaq.calc.psd.to_octave(df_psd, fstart=4, octave_bins=3)

fig = px.line(df_psd_oct)

fig.update_layout(
    title='Octave Spaced Power Spectral Density',
    xaxis_title="Frequency (Hz)",
    yaxis_title="Acceleration (g^2/Hz)",
    xaxis_type="log",
    yaxis_type="log",
    legend=dict(
        orientation="h",
        yanchor="top",
        y=-.2,
        xanchor="right",
        x=1
    )
  )

fig.show()
510251002510002510k510n25100n252510μ25100μ250.00125
variableX (100g)Y (100g)Z (100g)Octave Spaced Power Spectral DensityFrequency (Hz)Acceleration (g^2/Hz)

Shock

For some shock data, we’ll use the motorcycle crash test data discussed in our blog post on pseudo velocity.

[ ]:
[doc,table] = get_doc_and_table('https://info.endaq.com/hubfs/data/Motorcycle-Car-Crash.ide',
                                display_recorder_info=False,
                                display_table=False)
df = get_primary_accel(doc, table)
df
X (500g) Y (500g) Z (500g)
timestamp
1024.088653 0.563998 -5.142559 0.575260
1024.088753 0.409059 -5.045741 0.847571
1024.088853 0.389691 -5.142559 1.275489
1024.088953 0.234751 -5.007014 0.905924
1024.089053 0.196017 -5.181287 0.633613
... ... ... ...
1152.098232 0.796408 -5.452379 0.497457
1152.098332 0.835142 -5.607288 0.205695
1152.098432 1.048184 -5.549197 0.205695
1152.098532 1.145022 -5.936471 0.478006
1152.098632 1.280594 -5.859016 0.419654

1280087 rows × 3 columns

Get Peak Time & Plot

[ ]:
def get_peak_time(df,num):
  """Get a subset of a dataframe around the peak value"""
  peak_time = df.abs().max(axis=1).idxmax() #get the time at which the peak value occurs
  d_t = (df.index[-1]-df.index[0])/(len(df.index)-1) #find the average time step
  fs = 1/d_t #find the sampling rate

  num = num / 2 #total number of datapoints to plot (divide by 2 because it will be two sided)
  df_peak = df[peak_time - num / fs : peak_time + num / fs ] #segment the dataframe to be around that peak value

  return df_peak
[ ]:
df_peak = get_peak_time(df,5000)

fig = px.line(df_peak)
fig.update_layout(
    title="Time History around Peak",
    xaxis_title="Time (s)",
    yaxis_title="Acceleration (g)",
    template="plotly_white",
    legend=dict(
        orientation="h",
        yanchor="top",
        y=-.2,
        xanchor="right",
        x=1
    )
)
fig.show()
1,137.251,137.31,137.351,137.41,137.451,137.51,137.551,137.61,137.651,137.7−500−400−300−200−1000100200
variableX (500g)Y (500g)Z (500g)Time History around PeakTime (s)Acceleration (g)

Filter & Plot

[ ]:
df_filtered = df - df.median() #For shock events it's sometimes best to avoid high pass filters because they can introduce weird artifacts
df_filtered = endaq.calc.filters.butterworth(df_filtered, low_cutoff=None, high_cutoff=150, half_order=3)
df_peak_filtered = get_peak_time(df_filtered,5000)

fig = px.line(df_peak_filtered)
fig.update_layout(
    title="Filtered Time History around Peak",
    xaxis_title="Time (s)",
    yaxis_title="Acceleration (g)",
    template="plotly_white",
    legend=dict(
        orientation="h",
        yanchor="top",
        y=-.2,
        xanchor="right",
        x=1
    )
)
fig.show()
1,137.251,137.31,137.351,137.41,137.451,137.51,137.551,137.61,137.651,137.7−60−40−2002040
variableX (500g)Y (500g)Z (500g)Filtered Time History around PeakTime (s)Acceleration (g)

Integrate to Velocity & Displacement

[ ]:
[df_accel, df_vel, df_disp] = endaq.calc.integrate.integrals(df_peak_filtered, n=2, highpass_cutoff=None, tukey_percent=0)

df_vel = df_vel-df_vel.iloc[0] #forced the starting velocity to 0
df_vel = df_vel*9.81*39.37 #convert to in/s
[ ]:
fig = px.line(df_vel)
fig.update_layout(
    title="Integrated Velocity Time History",
    xaxis_title="Time (s)",
    yaxis_title="Velocity (in/s)",
    template="plotly_dark",
    legend=dict(
        orientation="h",
        yanchor="top",
        y=-.2,
        xanchor="right",
        x=1
    )
)
fig.show()
1,137.251,137.31,137.351,137.41,137.451,137.51,137.551,137.61,137.651,137.7−600−400−2000200
variableX (500g)Y (500g)Z (500g)Integrated Velocity Time HistoryTime (s)Velocity (in/s)

Shock Response Spectrum

[ ]:
freqs=2 ** np.arange(0, 12, 1/12)

pvss = endaq.calc.shock.pseudo_velocity(df_peak-df_peak.median(), freqs=freqs, damp=0.05)
pvss = pvss*9.81*39.37 #convert to in/s
[ ]:
fig = px.line(pvss)
fig.update_layout(
    title='Psuedo Velocity Shock Spectrum (PVSS)',
    xaxis_title="Natural Frequency (Hz)",
    yaxis_title="Psuedo Velocity (in/s)",
    template="plotly_dark",
    xaxis_type="log",
    yaxis_type="log",
    legend=dict(
        orientation="h",
        yanchor="top",
        y=-.2,
        xanchor="right",
        x=1
    )
  )
125102510025100022345678910234567891002345678
variableX (500g)Y (500g)Z (500g)Psuedo Velocity Shock Spectrum (PVSS)Natural Frequency (Hz)Psuedo Velocity (in/s)